湖州吴兴区南太湖高新区科创园招商推介产业规划乡村振兴新旧动能转换特色小镇
当前位置:首页 > 产业 > 公司 > 正文

AI算力需求爆发式增长 这几年华为在做些什么?

来源:TechWeb 2019-08-23 09:25中投投资咨询网 A-A+

  看似高深的人工智能(AI)技术,其实已经“润物细无声”地深入大众生活,仅你手中一部华为Mate20手机,就可以实现人脸识别、物体识别、物体检测、图像?#25351;睢?#26234;能翻译等AI功能。这背后,依仗的是手机算力的大幅提升。其中小小一枚?#29615;智?#30828;币大小的华为麒麟980手机芯片,?#22270;?#25104;了69亿个晶体管,具备每秒钟完成万亿次级运算的能力。你可能想不到,如今自己手中任何普通智能手机的算力,甚至比美国航空航天局1969年登月计划中最先进计算机还高出几百上千万倍乃至更高。

  数据、算力和算法,驱动着人工智能的第三次浪潮。其中,算力正是重要的基石。手机端的芯片算力几年间已经发展到如?#21496;?#20154;,用于云端的AI芯片需要处理自动驾驶等复杂场景的海量数据,又需要多强大的算力呢? OpenAI近期发布的研究显示,仅2012年以来,人们?#26434;?#31639;力的需求增长六年就超过 30万倍,平均每年增长10倍,?#23545;?#36229;过了摩尔定律的发?#39038;?#24230;,因为深度学?#21543;?#32463;网络需要对张量(可以简化理解为矩阵)进行大规模并行计算,颠覆了传?#36710;?#28014;点计算,对算力的需求正在出现指数级的爆炸式增长。例如原来1个时钟单元只能计算1次浮点计算,现在可以通过新的算子同时对N*N的矩阵计算,如果N=10,那就是同时计算了100次,计算?#38382;?#36739;原来增长了100倍,新算子带来了对新芯片的强大算力诉求。

  如果说2019年最受舆论关注的ICT和智能终端厂商是华为,那么其去年10月以来一直“犹抱琵琶半遮面”的业界算力最高AI处理器——Ascend(昇腾)910芯片,则是人工智能圈本年度最期待的AI芯片。

  面对 AI 算力需求的爆发式增长,这几年华为在做些什么?

  率先将专用NPUAI芯片引入手机

  人工智能发展中,我国在数据方面具备优势,但在算法与算力方面?#28304;?#21457;展,尤其是芯片与硬件代表的算力方面。算法科学家、工程师和应用厂商面临着AI算力稀缺和昂贵问题,大大抬高了算法研究和创新门槛,阻碍着AI的全行业普及和应用。

  正因如此,尽管AI芯片在金钱、时间和人力各方面的研发成本高?#28023;?#20294;在AI商业赛道上,各厂商都在打造各自的芯片体系,其中多为聚焦于某一应?#27809;?#26576;一场景的互联网和芯片厂商,也?#29615;CT大厂。国内厂商中,华为在AI芯片的布局堪称“经典”。

  在AlphaGo一战成名之前,绝大多国?#21496;?#24050;经完成了从功能手机到第一代智能手机的换代,不断增长的手机系统?#28304;?#21151;能特性和第三方应用,刷新着?#27809;?#30340;体验。无论是AI功能还是场景化AI服务,都需要手机完成复杂深度学习算法模型运算,计算密集复杂,计算需求巨大,实时性非常挑战;同时运行环境受限,功耗、内存、存储空间非常挑战,因此强大的算力是必须的。

  如何将人工智能引入到手机终端,是彼时?#36824;?#21326;为在内的手机厂商都在努力攻破的问题。

  2017年9月的柏林电子消费展上,华为正式向发布全球首款移动端AI芯片麒麟970,一个月后发布了搭载麒麟970的旗舰手机Mate 10。麒麟970是全球首款内置了独立神经网络处理单元(即NPU)的人工智能芯片。华为第一个将NPU引入手机芯片,在此之后,?#36824;?#19977;星等厂商纷纷跟进,到今天,AI手机已成为众多手机厂商的旗舰配置。麒麟970内置NPU性能大幅优于CPU、GPU和DSP这些通用计算单元。同时相比CPU获得了约50倍能效和25倍性能优势。这意味着,麒麟970芯片可?#26434;?#26356;少的能耗更快地完成AI计算任务。

  在NPU的加持下,手机功能?#19981;?#21464;得更加强大。例如使用语音功能时,AI会对当前语境和内容进行细致的分析,从而实?#25351;?#20934;确率的识别体验,将语音识别的成功率提升到更高的级别。这样一来,以智能助手为主语音功能就得以替代传?#36710;?#25163;工输入,扮演更重要的角色,或许以后大街上见不到边玩边走“低?#32439;?rdquo;,而是更多人对着手机“自言?#26434;?rdquo;了。

  在?#27809;?#21313;分关心的拍照方面,AI的出现同样为?#19981;?#25163;机摄影的?#27809;?#24102;来不少福利。麒麟970搭载双通道ISP图像信号处理器,在动态影像捕捉和低光拍照上有很大的提升。双摄?#20302;?双ISP软硬件优化、再配合人工智能的计算机视觉分析,便能自动分析画面内的物体,并选择当前最佳的拍照模式,甚至可以进行物体?#32439;?#23545;?#36141;?#39044;测?#27809;?#25293;照时机,提供前所?#20174;械?#25293;照体验。

  麒麟970的推出,成为传统智能手机和未来AI手机的重要分水岭,AI手机的发展也从单纯的算法优化进入了硬件能力的真·人工智能比拼阶段。

  2018年8月,同样是在柏林电子消费展上,华为又发布了全球首款7nm人工智能手机芯片——麒麟980。

  1纳米等于1毫微米(?#35789;?#20159;分之一米),约为10个原子的长度。一根头发丝直?#23545;?#20026;0.1毫米,而7nm相当于头发丝的万分之一,在不到1平方厘米的麒麟980内部有高达69亿个晶体管。?#26377;?#29255;工艺上看,7nm相当于70个原?#21448;本叮?#36924;近了硅基半导体工艺的物理极限,麒麟980实现了在针尖上翩翩起舞。华为消费者业务CEO余承东表示,麒麟980的7nm工艺是由超过1000多名半导体工程师组成的团队历时3年时间、经历超过5000多次的工程验证精心打磨的成果。

  相?#26434;?#40594;麟970来说,麒麟980全面升级。以图像识别速度为例,麒麟970可达到约2005张每分钟,而麒麟980在移动端双NPU强大算力加持下,实?#32622;?#20998;钟图像识别4500张,识别速度相比上一代提升120%,远高于业界同期水平。随之而来的,是人脸识别、语音助手、AI拍照,及各类智能美拍P图等APP在手机?#31995;?#20840;面升级。

  同时,面对更海量的?#27809;В?#40594;麟710让更多消费者享受到人工智能的乐趣。到了2019年,华为推出麒麟810芯片,这是华为第二款7nm工艺的手机芯片,也是华为首款自研达?#31227;?#26550;构NPU的手机芯片,这意味着更多海量?#27809;?#20139;受到专用NPU带来的旗舰级的AI体验。

  至此,华为完成第一轮在手机端的AI芯片布局(麒麟970、麒麟980、麒麟710、麒麟810),手机产业也正式走入了AI时代。

  “达?#31227;?rdquo;构建端边云算力大爆发基础

  AI赛道比拼,影响的绝不仅是手机端,边缘侧、云侧的硬件算力、数据算法等元素无一不处于白热化的竞赛之中,几乎每天都?#34892;?#30340;论文、新的产品问世。

  如果说华为在芯片?#31995;某中?#25237;入属“?#24433;?#24605;危”,显示的是其远见与决心。那么,华为在人工智能领域的野心则更为宏大,这一次,华为不仅要覆盖云、边、端各种场景,还要形成从应用使能到系?#36710;?#33455;片的闭环。

  2018年10月,华为在其全联接大会上首次提出全栈全场景 AI 解决方?#31119;?#21326;为轮值董事长徐直军表示,“全场景,是指包括公?#24615;啤?#31169;?#24615;啤?#21508;?#30452;咴导?#31639;、物联网行业终端以及消费类终端等部署环?#22330;?#20840;栈是技术功能视角,是指包括芯片、芯片使能、训练和推理框架和应用使能在内的全堆?#29615;槳浮?rdquo;

  其中,全栈AI的基础,是一系列基于统一的达?#31227;?#26550;构的AI芯片——从IoT到终端(如麒麟芯片的NPU)、到边缘侧再到云。在会上,徐直军还宣布,“外界一直在传华为在开发AI芯片,我要告诉大家,这是事实,我们今天发布两颗AI芯片:华为昇腾(Ascend)910和310。”?#25628;?#19968;出,立刻在国内外人工智能圈子惊起波澜——华为终于祭出了大招。

  达?#31227;?#26550;构针对AI运算特征而设计,以高性能3D Cube计算引擎为基础,实现了算力和能效的大幅提升。从云、边缘、端独立的和协同的AI?#23548;?#38656;求出发,从极致低功?#27169;?#21040;极致大算力的AI场景,为云、边、端之间的算法协同、迁移、部署、升级和运维,提供了统一架构底层核心支撑,大大降低了人工智能算法开发和迭代的门槛,降?#25512;?#19994;人工智能部署和商用成本。

  目前,昇腾(Ascend)芯片家族中的昇腾310已经落地商用。基于昇腾310,华为陆续发布了包括Atlas 200、Atlas 300、Atlas 500、Atlas 800等产品,已?#36824;?#27867;应用于安防、金融、医疗、交通、电力、汽车等行业,涉?#21543;?#20687;机、无人机、机器人、智能小站、MDC(Mobile Data Center)等产品形态。并提供基于昇腾310的AI云服务,比如华为云图像分析类服务、OCR服务、视频智能分析服务等超过50款API已经基于昇腾310,日均调用量超过1亿次。另有大?#31185;?#19994;客户正在借助昇腾310芯片自己开发算法服务。

  随着昇腾310相关产品大规模上市,外界对昇腾910的期待更盛。毕竟,去年10月,徐直军在会上公布,“昇腾910是计算密度最大的单芯片,最大功耗为350W,半精度为(FP 16)256 Tera FLOPS,比英伟达 V100的125 Tera FLOPS还要高出近1倍。若集齐1024个昇腾910,将会出现迄今为止全球最大的AI计算集?#28023;?#24615;能也将达到256个P,?#36824;?#22810;复杂的模?#25237;?#33021;轻松训练。”简单来说就是,昇腾910是业界算力最高的AI处理器,相同功?#37027;?#20917;下,它的算力是业界芯片的2倍,最强CPU的50倍。

  全栈全场景AI逐步落地

  除了昇腾系?#34892;?#29255;外,华为提出的全栈AI,还包括支持端、边、云独立的和协同的统一训练和推理框架MindSpore,芯片算子库和高度自动化算子开发工具——CANN,提供全流程服务(ModelArts)、分层API和预集成方案的应用使能。

  其中,在2019年已经落地实现商用的,除了昇腾310,还有其面向?#27809;?#21644;开发者的门户——华为云ModelArts。作为一站式AI开发平台,ModelArts可以提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成,及端-边-云模型按需部署能力,帮助?#27809;?#24555;速创建和部署模型,管理全周期 AI 工作流。2019年5月,在斯坦福大学DAWNBench榜单,华为云ModelArts获得图像识别训练第一,ImageNet-1k数据集上用128块V100 GPU训练ResNet-50模型仅需要2分43秒,而在2017年10月,斯坦福DAWN的训练时间是13天10小时41分钟。斯坦福大学DAWNBench榜单几乎聚集了国内外领先AI厂商,ModelArts如果由强大的昇腾910加持,是否能进一步刷新世界纪录?若再采用1024个昇腾910的全球最大AI计算集?#28023;?#21448;将出现什么样的成绩?

  从端侧到边缘侧再到云侧,从底层硬件到深度学习框架再到上层应用使能,华为的全栈全场景AI战略正在逐步落地。在一年前关于AI的豪言中,哪些是华为下一步将要向市场兑现的呢?我们拭目?#28304;?/p>

关键词:手机产业 AI时代
中投投资咨询网版权及免责声明
  • 1、中投投资咨询网倡导尊重与保护知识产权。如发现本站文章存在版权问题,烦请联系[email protected]、0755-88350114,我们将及时沟通与处理。
  • 2、凡本网注明"来源:***(非中投投资咨询网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点?#25237;?#20854;真实性负责,不对您构成任何投?#24335;?#35758;,?#27809;?#24212;基于自己的独立判断,自行决定相关投?#20160;⒊械?#30456;应风险。
免费报告
相关阅读
大健康投资前景
大健康产业投资前景预测 大健康产业投资前景预测
· 投资机会
热门报告
神秘的百慕达客服